from enum import unique import hashlib import math import numpy as np import random import time N = 8 M = 2 def vec_to_int(x): global N z = 0 for i in range(0, N + 1): z <<= 1 z |= x[i] return z def timeit(f): def timed(*args, **kw): ts = time.time() result = f(*args, **kw) te = time.time() print('func:%r took: %2.4f sec' % (f.__name__, te-ts)) return result return timed class Candidate: def __init__(self, layer): global N self.layer = layer self.node_count = layer self.offsets = np.zeros((self.node_count, N + 1)).astype(np.int32) class Probabilities: def __init__(self, layer): global N self.layer = layer self.node_count = layer self.p_offsets = np.zeros((self.node_count, N + 1)) self.p_offsets.fill(0.5) self.offset_coherences = np.zeros((2, self.node_count, N + 1, 2, self.node_count, N + 1)) self.offset_coherences.fill(-1) self.deltas = np.zeros((self.node_count, N + 1, 2, self.node_count, N + 1)) def has_converged(self): global N for i in range(0,self.node_count): for j in range(0, N + 1): if self.p_offsets[i][j] > 0.05 and self.p_offsets[i][j] < 0.95: return False return True def flatten(self): global N candidate = Candidate(self.layer) for i in range(0, self.node_count): for j in range(0, N + 1): candidate.offsets[i][j] = 1 if self.p_offsets[i][j] >= 0.95 else 0 return candidate def clamp(x, min_value = 0.01, max_value = 1): return min(max(x, min_value), max_value) def encode(v): global N byte_values = [] for i in range(0, math.ceil(N / 8)): x = 0 for j in range(0, 8): index = i * 8 + j if index >= len(v): continue x <<= 1 x |= int(v[index]) byte_values.append(x) return bytearray(byte_values) # 00100111 x4 # 00000110 x1 def sha(v): global M x = encode(v) m = hashlib.sha256() m.update(x) result = m.digest() return result[0] % M def xor(x): num_one_bits = 0 for i in range(0, len(x)): if i == 0: continue num_one_bits += x[i] return num_one_bits % 2 # 0 ^ 1 ^ (2 ^ (4 * (5 ^ 0 * 7))) * (3 ^ 6 * 7) # 0 ^ 1 ^ 2 * 3 ^ 2 * 6 * 7 ^ 3 * 4 * (5 ^ 0 * 7)) ^ 4 * 6 * 7 * (5 ^ 0 * 7) # 0 ^ 1 ^ 2 * 3 ^ 2 * 6 * 7 ^ 3 * 4 * 5 ^ 0 * 3 * 4 * 7 ^ 4 * 5 * 6 * 7 ^ 0 * 4 * 6 * 7 # 0 ^ 1 ^ 2*3 ^ 2*6*7 ^ 3*4*5 ^ 0*3*4*7 ^ 4*5*6*7 ^ 0*4*6*7 def test_fn(x): # 0 1 # 2 | 3 # 4 | 5 | 6 | 7 # | | 0 | 7 | | | | return x[0] ^ x[1] ^ ((x[2] ^ (x[4] * (x[5] ^ (x[0] * x[7])))) * (x[3] ^ (x[6] * x[7]))) def candidate_fn(x): return x[0] ^ x[1] ^ (~(x[2] ^ x[3]) * x[2]) def true_fn(x): return x[0] ^ x[1] ^ (x[3] * x[2]) def hamming_distance(a, b, scratch): np.logical_xor(a, b, scratch) return sum(scratch) def coherence(outputs, distances): coherences = [] for i in range(0, len(outputs)): y_a = outputs[i] numerator = 0 denominator = 0 for j in range(0, len(outputs)): if i == j: continue y_b = outputs[j] weight = distances[i][j] denominator += weight if y_a == 0 and y_b == 0 or y_a == 1 and y_b == 1: numerator += weight coherence = numerator / denominator if denominator > 0 else 0 coherences.append(coherence) return sum(coherences) / len(coherences) def random_sample(m, n): inputs = np.zeros((m, n + 1)).astype(np.int32) for i in range(0, m): for j in range(0, n): inputs[i][j] = random.randint(0, 1) inputs[i][n] = 1 return inputs def populate_distances(inputs, distances, scratch): for i in range(0, len(inputs)): x_a = inputs[i] for j in range(0, len(inputs)): if i == j: continue x_b = inputs[j] distance = hamming_distance(x_a, x_b, scratch) distances[i][j] = 1.0 / (2 ** distance) def evaluate(layers, candidate, x, compute_scratch): global N z = evaluate_layers(layers, x, compute_scratch) z ^= evaluate_candidate(candidate, x, compute_scratch) return z def evaluate_layers(layers, x, compute_scratch): global N z = 0 for layer in layers: z ^= evaluate_candidate(layer, x, compute_scratch) return z def evaluate_candidate(candidate, x, compute_scratch): y = 1 for j in range(0, candidate.node_count): value = 0 np.multiply(candidate.offsets[j], x, compute_scratch) value ^= np.sum(compute_scratch) % 2 y &= value return y @timeit def compute_scores(probabilities, candidates, num_candidates, layers, scores, distances, inputs, outputs, output_xor, expected_outputs, sample_size, int_scratch): global M, N for i in range(0, sample_size): outputs[0][i] = evaluate_layers(layers, inputs[i], int_scratch) for j in range(1, num_candidates): np.copyto(outputs[j], outputs[0]) np.subtract(outputs[0], expected_outputs, output_xor) np.mod(output_xor, M, output_xor) base_score = coherence(output_xor, distances) scores.fill(0) unique_candidates = {} for j in range(0, num_candidates): create_candidate(probabilities, candidates[j]) unique_candidates[candidate_str(candidates[j])] = j for i in range(0, sample_size): for _, j in unique_candidates.items(): candidate = candidates[j] outputs[j][i] ^= evaluate_candidate(candidate, inputs[i], int_scratch) for _, j in unique_candidates.items(): candidate = candidates[j] np.subtract(outputs[j], expected_outputs, output_xor) np.mod(output_xor, M, output_xor) score = coherence(output_xor, distances) scores[j] = score return base_score def compute_uplift(candidate, layers, distances, inputs, outputs, output_xor, expected_outputs, sample_size, int_scratch): global M, N for i in range(0, sample_size): outputs[0][i] = evaluate_layers(layers, inputs[i], int_scratch) np.subtract(outputs[0], expected_outputs, output_xor) np.mod(output_xor, M, output_xor) base_score = coherence(output_xor, distances) for i in range(0, sample_size): outputs[0][i] ^= evaluate_candidate(candidate, inputs[i], int_scratch) np.subtract(outputs[0], expected_outputs, output_xor) np.mod(output_xor, M, output_xor) score = coherence(output_xor, distances) return (base_score, score) @timeit def update_probabilities(probabilities, candidates, inputs, base_score, scores, scale): global N num_candidates = len(candidates) probabilities.offset_coherences.fill(-1) for p in range(0, num_candidates): candidate = candidates[p] if scores[p] == 0: continue # score = max(scores[p], base_score) score = scores[p] for j in range(0, probabilities.node_count): for k in range(0, N + 1): i = candidate.offsets[j][k] for m in range(0, probabilities.node_count): for n in range(0, N + 1): l = candidate.offsets[m][n] probabilities.offset_coherences[i][j][k][l][m][n] = max(score, probabilities.offset_coherences[i][j][k][l][m][n]) p_offsets_next = np.zeros((probabilities.node_count, N + 1)) inertia = 0 for j in range(0, probabilities.node_count): for k in range(0, N + 1): delta = 0 count = 0 for m in range(0, probabilities.node_count): for n in range(0, N + 1): # if j == m and k == n: # continue p_j1_if_m0 = probabilities.offset_coherences[1][j][k][0][m][n] p_j0_if_m0 = probabilities.offset_coherences[0][j][k][0][m][n] p_j1_if_m1 = probabilities.offset_coherences[1][j][k][1][m][n] p_j0_if_m1 = probabilities.offset_coherences[0][j][k][1][m][n] if p_j1_if_m0 >= 0 and p_j0_if_m0 >= 0: # delta_if_m0 = (p_j1_if_m0 - base_score) - (p_j0_if_m0 - base_score) delta_if_m0 = p_j1_if_m0 - p_j0_if_m0 delta += delta_if_m0 * (1.0 - probabilities.p_offsets[m][n]) * scale count += 1 if p_j1_if_m1 >= 0 and p_j0_if_m1 >= 0: # delta_if_m1 = (p_j1_if_m1 - base_score) - (p_j0_if_m1 - base_score) delta_if_m1 = p_j1_if_m1 - p_j0_if_m1 delta += delta_if_m1 * probabilities.p_offsets[m][n] * scale count += 1 if count > 0: delta /= count p_offsets_next[j][k] = clamp(probabilities.p_offsets[j][k] + delta, 0, 1) inertia += abs(p_offsets_next[j][k] - probabilities.p_offsets[j][k]) for j in range(0, probabilities.node_count): for k in range(0, N + 1): p_offset_next = 0.9 * probabilities.p_offsets[j][k] + 0.1 * p_offsets_next[j][k] # if p_offset_next <= 0.05: # p_offset_next = 0.0 # elif p_offset_next >= 0.95: # p_offset_next = 1.0 probabilities.p_offsets[j][k] = p_offset_next return inertia def create_candidate(probabilities, candidate): global N for i in range(0, probabilities.node_count): for j in range(0, N + 1): candidate.offsets[i][j] = 1 if random.random() < probabilities.p_offsets[i][j] else 0 def copy_candidate(src, dest): global N for i in range(0, src.node_count): for j in range(0, N + 1): dest.offsets[i][j] = src.offsets[i][j] def p(x): return math.ceil(x * 100) / 100 def p_a(x): return [p(z) for z in x] def print_probabilities(probabilities): print('=====================') for i in range(0, probabilities.node_count): print(i, p_a(probabilities.p_offsets[i])) print('=====================') def candidate_str(candidate): global N build_str = '' for i in range(0, candidate.node_count): for j in range(0, N + 1): build_str += str(candidate.offsets[i][j]) return build_str def main(): global N, M sample_size = 64 num_candidates = 100 num_survivors = 1 uplift_sample_size = 100 output_xor = np.zeros(sample_size,) scratch = np.zeros((N + 1,)) int_scratch = np.zeros((N + 1,)).astype(np.int32) g = test_fn expected_outputs = np.zeros((sample_size,)) inputs = random_sample(sample_size, N) distances = np.zeros((sample_size, sample_size)) populate_distances(inputs, distances, scratch) for i in range(0, sample_size): expected_outputs[i] = g(inputs[i]) outputs = np.zeros((num_candidates + num_survivors, sample_size,)).astype(np.int32) scores = np.zeros((num_candidates + num_survivors,)) layers = [] layer = 1 np.subtract(outputs[0], expected_outputs, output_xor) np.mod(output_xor, M, output_xor) score = coherence(output_xor, distances) while score < 1: probabilities = Probabilities(layer) candidates = [Candidate(layer) for _ in range(0, num_candidates + num_survivors)] inertia = 1 epoch = 1 while inertia > 0.001 and epoch < 1000 and not probabilities.has_converged(): base_score = compute_scores(probabilities, candidates, num_candidates, layers, scores, distances, inputs, outputs, output_xor, expected_outputs, sample_size, int_scratch) round_inertia = update_probabilities(probabilities, candidates, inputs, base_score, scores, 1 + 0.01 * epoch) inertia = 0.9 * inertia + 0.1 * round_inertia print_probabilities(probabilities) for candidate in layers: print(candidate.offsets) max_score = np.max(scores) print(base_score, max_score,round_inertia, inertia) top_n = sorted(range(len(scores)), key=lambda i: scores[i])[-num_survivors:] for i in range(0, num_survivors): src_index = top_n[i] dest_index = num_candidates + i if src_index == dest_index: continue src = candidates[src_index] dest = candidates[dest_index] candidates[dest_index] = src candidates[src_index] = dest inputs = random_sample(sample_size, N) populate_distances(inputs, distances, scratch) for i in range(0, sample_size): expected_outputs[i] = g(inputs[i]) epoch += 1 candidate = probabilities.flatten() print(candidate.offsets) for j in range(0, sample_size): outputs[0][j] = evaluate(layers, candidate, inputs[j], int_scratch) np.subtract(outputs[0], expected_outputs, output_xor) np.mod(output_xor, M, output_xor) score = coherence(output_xor, distances) average_base_score = 0 average_score = 0 for i in range(0, uplift_sample_size): inputs = random_sample(sample_size, N) populate_distances(inputs, distances, scratch) for i in range(0, sample_size): expected_outputs[i] = g(inputs[i]) (base_score, score) = compute_uplift(candidate, layers, distances, inputs, outputs, output_xor, expected_outputs, sample_size, int_scratch) average_base_score += base_score average_score += score average_base_score /= uplift_sample_size average_score /= uplift_sample_size uplift = average_score - average_base_score print(uplift) if uplift <= 0: layer += 1 continue layers.insert(0, candidate) if layer == 1: layer += 1 for candidate in layers: print(candidate.offsets) if __name__ == "__main__": main()